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Abstract

Nanobiotechnology has driven transformative advancements in healthcare, particularly in the development of innovative so-
lutions for wound treatment, a persistent and costly global health concern. Among these advancements, the combination of
biopolymers and metallic nanoparticles has attracted considerable interest due to their excellent biocompatibility and potent
antimicrobial activity. This scoping review explores recent technological progress in wound care, with a focus on alginate-
based dressings functionalized with metallic nanoparticles. Alginate, a highly versatile biopolymer, was frequently employed
in diverse formats, including hydrogels, sponges, beads, films/membranes, and fibers, across the analyzed studies. Silver
nanoparticles were the most extensively investigated agents, owing to their well-established efficacy and the development
of strategies to mitigate associated risks. Other metallic nanoparticles were also reported, contributing to a growing body of
evidence supporting their therapeutic relevance. The synergistic integration of alginate and metallic nanoparticles has shown
promising potential to enhance the performance of wound dressings, representing a significant step forward in the design of
next-generation materials for effective and targeted wound management.

Introduction by impaired or delayed healing processes, require a multifaceted
approach involving tissue debridement, infection control, moisture
balance, and advanced dressings that create an optimal environ-
ment for tissue regeneration.*

The application of nanotechnology in wound care has emerged
as a powerful tool for addressing these challenges. Nanomaterials,
such as metallic nanoparticles (NPs), offer unique physicochemi-
cal properties, including a high surface area-to-volume ratio and
tunable size, that enable enhanced interactions with biological sys-
tems.? These properties provide a platform for developing innova-
tive wound care products with superior functionality, such as tar-

Nanobiotechnology has revolutionized healthcare by driving sig-
nificant advancements in developing innovative solutions for the
prevention and treatment of wounds.! Wounds, particularly chron-
ic and complex ones, remain a global public health challenge,
causing substantial economic burdens and negative psychosocial
impacts, including prolonged treatment costs and reduced quality
of life for affected individuals.>* Complex wounds, characterized
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geted antimicrobial action, controlled drug release, and enhanced
wound healing. However, nanotechnology also poses challenges,
such as potential cytotoxicity, environmental persistence, and the
need for precise synthesis and characterization methods.® Despite
these limitations, the significant potential of nanotechnology in op-
timizing wound treatment drives ongoing research and innovation.

Biopolymers, particularly alginate (ALG), have been exten-
sively explored in this field due to their biocompatibility, biodeg-
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radability, and ability to serve as platforms for bioactive dressing
development.” Alginate, a naturally derived hydrophilic polysac-
charide, is especially valued for its gelling capacity and moisture
retention properties, making it an ideal candidate for wound dress-
ings. Its biodegradable, biocompatible, and bioadhesive character-
istics further enhance its suitability for various forms, including
hydrogels, microspheres, fibers, sponges, and membranes.®? The
versatility of ALG has enabled the development of numerous com-
mercially available wound care products.

Among these technologies, alginate-based hydrogels have gar-
nered particular attention due to their cost-effectiveness, abun-
dance, and adaptability. They are recognized for meeting the cri-
teria of an ideal wound dressing, such as strong adherence to the
wound surface, easy removal for cleaning, mechanical and thermal
protection, moisture regulation, and the ability to deliver bioac-
tive agents.!” However, traditional alginate dressings are limited
in their antimicrobial efficacy and require functionalization with
additional agents to address infection risks effectively.

Advances in nanobiotechnology have addressed these limita-
tions by enabling the incorporation of metallic nanoparticles, such
as silver nanoparticles (AgNPs), into alginate-based dressings.
AgNPs have long been known for their potent antimicrobial prop-
erties, including antibacterial, antifungal, and antiviral activities,
which are further enhanced at the nanoscale.!! Additionally, Ag-
NPs offer anti-inflammatory and anticancer properties and have
applications in biomedical device coatings, diagnostic imaging,
and targeted drug delivery.'>'3 This versatility has led to their in-
clusion in various commercially available wound care products.

The antimicrobial mechanisms of AgNPs involve disrupting
microbial cell membranes, generating reactive oxygen species,
and interfering with essential cellular processes, such as protein
synthesis and DNA replication.'* These properties make them
effective against sensitive and multidrug-resistant microorgan-
isms, offering a valuable tool for combating antibiotic resistance.
However, their use is not without challenges. The potential cyto-
toxicity of AgNPs, mediated by mitochondrial respiratory chain
disruption, reactive oxygen species overproduction, and adenosine
triphosphate synthesis inhibition, raises concerns about their safety
in clinical applications.' Additionally, the environmental accumu-
lation of metallic nanoparticles necessitates the development of
sustainable synthesis and disposal strategies.

Despite these challenges, integrating alginate with metallic nano-
particles, particularly AgNPs, represents a promising innovation in
wound care. This combination enhances the antimicrobial properties
of alginate-based dressings and improves their ability to modulate
the wound microenvironment and accelerate the healing process.
The exploration of alternative metallic nanoparticles, such as gold
(Au), zinc oxide (Zn0O), and titanium dioxide (TiO,), offers addi-
tional avenues for addressing the limitations of AgNPs while main-
taining the advantages of nanotechnology in wound treatment.'®17

In this context, this scoping review aims to map and analyze the
latest technological innovations in wound care involving alginate-
based dressings functionalized with metallic nanoparticles. This
approach seeks to provide insights into the benefits, limitations,
and future potential of these advanced materials in addressing the
complex challenges of wound management.

Methodology

Study design

This scoping review was conducted following the Joanna Briggs
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Institute (JBI) methodological framework,'$-2! which provides
a comprehensive approach to mapping the available evidence.
The review was reported in accordance with the PRISMA-ScR
(Preferred Reporting Items for Systematic Reviews and Meta-
Analyses extension for Scoping Reviews) checklist,?>?3 and the
research protocol was registered on the Open Science Framework
platform.

Research question

The research question was developed using the “Population, Con-
cept, Context” framework recommended by JBI, resulting in the
following question: What are the technological innovations in
wound care involving dressings developed with alginate and me-
tallic nanoparticles?

Eligibility criteria

Studies were included if they addressed any stage of the develop-
ment of dressings containing alginate and metallic nanoparticles;
were available in full in the consulted databases or other sources;
and were written in English, Portuguese, or Spanish, with no re-

strictions on publication year or methodological approach. Dupli-
cate studies were removed and considered only once.

Search strategy

Descriptors were selected from the Health Sciences Descriptors
and Medical Subject Headings. The final search expression was:
(“Metal Nanoparticles” AND alginate) AND (‘“Wound Healing”
OR “Wound Infection™).

An initial calibration search was conducted in MEDLINE (via
PubMed) to assess the sensitivity and specificity of the strategy.
Once validated, the search was replicated in ScienceDirect, Web of
Science, Scopus, LILACS, and SciELO. Additional studies were
identified by screening the reference lists of included articles and
through gray literature searches in Google Scholar (first 100 re-
sults). The search was completed on June 22, 2024.

Study selection

All retrieved references were imported into the Rayyan reference
manager, where duplicates were removed. Two independent review-
ers screened titles and abstracts, followed by full-text assessment
according to the eligibility criteria. Discrepancies were resolved
through discussion, with a third reviewer acting as arbitrator when
necessary. The selection process is illustrated in Figure 1.

Data extraction and analysis

Data extraction was performed using a structured instrument de-

veloped by the authors in accordance with JBI guidelines. Extract-

ed data included:

» Bibliographic details (author, year, journal, and country of ori-
gin based on the first author’s affiliation);

* Methodological approach;

» Structural and functional components of the dressings;

* Preparation methods, and

* Reported therapeutic outcomes.

The data analysis consisted of a qualitative descriptive synthe-
sis. Studies were grouped into thematic categories—geographical
research distribution, structural composition of dressings, func-
tionalization strategies, fabrication techniques, and therapeutic
performance. Patterns, technological trends, and knowledge gaps
were identified through iterative comparison of study characteris-
tics. The synthesis was supported by summary tables, infograph-
ics, and narrative integration of findings.
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Fig. 1. PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) flow diagram of the study
selection process. Flowchart illustrating the identification, screening, eligibility assessment, and inclusion of studies in accordance with PRISMA-ScR guide-
lines. The diagram details the number of records retrieved from databases and other sources, duplicates removed, records screened by title/abstract, full-
text articles assessed for eligibility, and final studies included in the review. ALG, alginate; NPs, nanoparticles.

Results

A total of 59 scientific articles met the inclusion criteria, cover-
ing studies conducted in Asia (66.1%), Europe (18.6%), Africa
(10.2%), and the Americas (5.1%) between 2010 and 2024 (Fig.
2). Asia, particularly China, clearly dominates this field, reflecting
its national investment in science, technology, and innovation as
strategic pillars of development. This leadership is supported by
robust research infrastructure, competitive funding, and interna-
tional collaborations, combined with a growing domestic demand
for advanced wound care solutions to address chronic wounds, dia-
betic ulcers, and age-related skin injuries. India also emerged as a
strong contributor, prioritizing the development of cost-effective,
biocompatible materials through environmentally friendly synthe-
sis routes, often relying on indigenous algal species for alginate
extraction. These initiatives align with policies aimed at position-
ing India as a hub for scalable biomedical technologies. In Europe,
Italy and Serbia were notable, the former focusing on reinforcing
alginate matrices with mechanical and bioactive enhancements,
and the latter exploring antimicrobial applications of locally syn-
thesized nanoparticles.
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In Africa, Egypt adapted nanotechnology to local contexts by
merging traditional medicinal knowledge with modern fabrication
strategies. Meanwhile, the Americas produced comparatively few-
er publications, though studies from Brazil and the United States
offered important insights into antimicrobial alginate formulations
for resource-limited healthcare environments. Taken together, this
distribution underscores the emergence of a multipolar and col-
laborative scientific ecosystem in nanomedicine.

Across all studies, sodium alginate was the primary structural
material, used either alone or in combination with natural or syn-
thetic polymers such as chitosan, carboxymethyl chitosan, car-
boxymethyl cellulose, cellulose nanocrystals, gelatin, polyvinyl
alcohol, polycaprolactone, or hyaluronic acid (Table 1).24-82 These
combinations were reported to enhance stability, swelling behav-
ior, tissue adhesion, and biodegradability, properties essential for
effective wound healing.”1 Among the functional agents, AgNPs
were the most prevalent, appearing in more than 80% of the re-
viewed formulations. Their popularity is linked to broad-spectrum
antimicrobial activity, low cytotoxicity at controlled doses, and
prevention of biofilm formation.>%!! Other nanoparticles included
ZnO (~18%), TiO, (~8%), FeO (~6%), CuO (~6%), PANPs (~6%),
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Fig. 2. Geographical and chronological distribution of the selected studies. (a) Donut chart illustrating the temporal evolution of research output between
2010 and 2024, showing a peak in publications from 2022 to 2024. (b) Bar chart comparing the number of publications among the top contributing coun-

tries/regions.

and Au (~4%). These alternatives offered additional benefits such
as antioxidant activity, photothermal responsiveness, and catalytic
effects.!’"13 Beyond metallic agents, natural bioactives like cur-
cumin, tamanu oil, epigallocatechin gallate, honey, and essential
oils were incorporated to further enhance anti-inflammatory and
regenerative properties while addressing concerns over antimicro-
bial resistance.

The choice of fabrication method was closely linked to the in-
tended structural and functional outcomes (Fig. 3). lonic crosslink-
ing with CaCl,, CaCO,, glutaraldehyde or glucono-delta-lactone
was the most common, producing dressing with tunable stiffness
and swelling properties. Freeze-drying generated porous sponges
and scaffolds, with high absorptive capacity, while electrospinning
produced nanofibers and membranes that mimic the extracellular
matrix, thereby promoting cell adhesion, proliferation, and oxygen
diffusion, whereas photocrosslinking stabilized hydrogel networks
with photosensitive compounds, enabling precise control over
morphology and mechanics.

The distribution of formulation types revealed a predominance
of hydrogels, which accounted for more than 50% of the report-

ed systems. Microbeads, fibers, and discs represented over 30%,
while films and membranes accounted for approximately 20%.
Coating applications in wound dressings constituted about 10%.
Regarding biological evaluations, most studies reported in vitro
antimicrobial activity and included cytotoxicity assays. A smaller
number involved in vivo animal models, and only a few presented
preliminary clinical findings.

Nanoparticles were synthesized by chemical, physical, and in-
creasingly by green methods, with synthesis routes strongly in-
fluencing size, morphology, and surface chemistry (Table 2, Fig.
4).24-82 As summarized in Table 2, AgNPs are typically produced via
chemical reduction (Sodium borohydride, sodium citrate, trisodium
citrate dimethyl formamide, carboxymethyl chitosan, ascorbic acid,
epigallocatechin gallate, sodium alginate, lysozyme, tannic acid,
sericin protein, LMWG 1,3:2,4-di(4-acylhydrazide)-benzylidene-
sorbitol (DBS-CONHNH,), Tannic acid and Fe complexes (Ta/Fe),
and d-glucose) yielding spherical, face-centered cubic structure, dot-
ted structures, nanoclusters, and quasi-spherical structures ranging
from 0,8-403 nm,24-36:38-40,43-55,57,58.60-63.65.66,68.70-7275.76 A NPs

synthesized through sodium citrate reduction exhibit uniform
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Table 1. Compacted overview of references 24-82, highlighting main categories, methods, and designs of polymer-based biomaterials

Group (Refs.)

Structural components
(alginate association)

Functional components

Preparation

Dressings design

Alginate-based
(25,29,30,33,42—
44,47,51,54,55,63,
65-67,72,73,75,77,79,
80,82)

Natural associa-

tions (24,28,31,36—
38,40,41,45,46,48,49,
56,58,60—-62,64,78)

Synthetic associations
(26,27,35,39,52,53,5
9,69,70,71,74,76,81)

Hybrid natural—
synthetic blends
(32,34,50,
57,68)

Alginate

Chitosan, Cellulose,
Gelatin, Natural gums,
Hyaluronic Acid,
Peptides and proteins

PCL, NIPAM, PVA,
PVDF, DBS-CONHNH,,
PEG, PEGDA, Carbopol

Association of alginate,
natural and syn-

thetic polymers, and

a plasticizing agent

NPs, Enzymes, Vitamins,
Natural and synthetic
compounds, Antibiot-
ics, Laser irradiation

NPs, Proteins, Natural com-
pound, Antibiotics, Metal
organic framework materi-
als, Photothermal treatment

NPs, Growth Factor Plasmid
DNA, Hemin, Natural and
synthetic compounds

NPs, coating agents,
Antibiotics

Water-soluble, Wet-
spinning, Freeze-
drying, Cross-linking,
Water wash, Air-dried.

Water-soluble, UV
irradiation, Freeze-
drying, Cross-linking,
Water wash, Air-dried.

Water-soluble, UV
irradiation, Electrospin-
ning, Cross-linking,
Water wash, Air-dried.

Water-soluble, Mag-
netic stirring, Overnight
soaking, Casting tech-
nique, Cross-linking.

Hydrogel, Film, Sponge, Fib-
ers, Beads, Discs, Sprayed
gel, Scaffolds, Membrane,
Wound dressing coating

Hydrogel, Films, Sponge,
Spheres, Wound
dressing coating

Hydrogel, Films, Fib-
ers, Scaffolds, Mem-
brane, Discs, Beads

Hydrogel, Films, Mem-
brane, Dissolvable
wound dressings

DBS-CONHNH,, 1,3:2:4-di(4-acylhydrazide)-benzylidene sorbitol; NIPAM, poly(N-isopropyl acrylamide); NPs, nanoparticles; PCL, polycaprolactone; PEG, polyethylene glycol; PEG-

DA, poly(ethylene glycol) diacrylate; PVA, polyvinyl alcohol; PVDF, polyvinylidene fluoride; UV, ultraviolet.

spherical morphologies (15-25 nm),*!** whereas CuNPs prepared
via hydrothermal and one-pot synthesis form spherical or rod-like
shapes of 50-300 nm.5¢77 ZnO nanoparticles produced via sol-gel,

ALGINATE AND
OTHERS MATERIALS

STRUCTURAL COMPONENT

)

METAL NANOPARTICLES,
DRUGS AND NATURAL
COMPOUNDS

FUNCTIONAL COMPONENT

PREPARATION

DILUTION AND MIXING
OF COMPONENTS

PHYSICAL/CHEMICAL
APPROACHES

Electrospinning/
Electrostatic Extrusion;
3D Printing;
Impregnation/coating
dressings;
Crosslinking/gelation;
Drying/Freeze drying; and
Other techniques.

co-precipitation, or hydrothermal approaches display diverse mor-
phologies, including spheres, rods, hexagons, rectangles, and sheet-
like. within 30—101 nm.37,53,57,67,69,70,74,78,80

WOUND DRESSING DESIGN

SPONGE/SCAFFOLDS

FILMS/MEMBRANE/

COATING

GEL/HYDROGEL

FIBERS/NANOFIBERS

MICROSPHERES/DISC |

Fig. 3. Schematic representation of alginate-based dressing preparation incorporating metallic nanoparticles. lllustration of the main processing steps, in-
cluding the selection of structural components (e.g., alginate, biopolymers), addition of functional agents (metallic nanoparticles), and fabrication methods
(e.g., ionic crosslinking, electrospinning, freeze-drying) to obtain application-specific wound dressings.
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Table 2. Summary of precursors, synthesis methods, sizes, and morphologies of nanoparticles reported in the literature

Nanopar- . Size range
ticles Precursor Synthesis approach (nm) Morphology Refs
Ag AgNO,, Ag,SO, Photoreduction (ultraviolet light 365 nm), 0.8-403 Spherical, face- 24-36,38-40,
Chemical reduction (sodium borohydride, centered cubic 43-55,57-58,
sodium citrate, trisodium citrate dimethyl structure, dot- 60-63,65,66,68,
formamide, carboxymethyl chitosan, ascorbic ted structures, 70-72,75,76
acid, epigallocatechin gallate, sodium algi- nanoclusters,
nate, lysozyme, tannic acid, sericin protein, quasi-spherical
LMWG 1,3:2,4-di(4-acylhydrazide)-ben-
zylidenesorbitol (DBS-CONHNH,), Tannic acid
and Fe complexes (Ta/Fe), and d-glucose),
Electrochemical synthesis, Green synthesis
Au HAuCI, Chemical reduction (sodium citrate) 15-25 Spherical 41,64
Cu Cu(NO,),xH,0 Hydrothermal, one-pot synthesis 50 -300 Spherical, 56,74,77
rod-shaped
Zn0O ZnCl,, Zn(OAc),, Sol-gel, hydrothermal meth- 30-101 Spherical, rod- 37,53,57,67,69,
Zn(CH,C00),'xH,0  od, Co-precipitation shaped, hexagonal 70,74,78,80
and rectangular-
shaped, sheet-like
Fe O, FeSO,-7H,0, Solvathermal synthesis, sol-gel approach, 5-64 Spherical, 70,80,81
Fe(acac), chemical reduction (ethylene glycol) cubic shapes
Tio, TiCI4’ Ti (Com- Green synthesis, Hydrothermal method 5-100 Nanoneedles 59,73,80,82
mercially plates),
Ti(acac)ZOiPrzl
Ti(0-i-Pr),
Pd PdCl, Green synthesis ~7—-45 Spherical 42,55,79
Other (VOx, VO,, MgCl,, Solvothermal method, chemical pre- 10-200 Nanowires, rec- 43,70,80
MgO, GeO, Ge(OEt), cipitation, sol-gel approach tangular and rod-
Al,0,) AI(O-i-Pr}3 shaped, spherical
Discussion and S. aureus and stimulating collagen synthesis in diabetic mice.

Recent advances in biomaterials for wound healing reveal that
natural polysaccharides, synthetic polymers, and hybrid nanocom-
posites can be strategically combined to achieve multifunctional
dressings. Alginate-based systems, often blended with chitosan,
PEG, or protein-based polymers, have been functionalized with
oxide metallic nanoparticles (AgO, ZnO, TiO,, CuO, FeO) and
others bioactive compounds to enhance antimicrobial activity, and
tissue regeneration. Electrospun nanofibers, hydrogels, films, and
3D scaffolds have demonstrated controlled drug release, extracel-
lular matrix-mimicking structure, and responsiveness to stimuli
such as pH and temperature, showing superior healing outcomes
compared to conventional dressings.

In recent years, hybrid and smart systems have expanded the
potential of alginate-based dressings. Dual-drug nanofibers, pho-
tothermal hydrogels, and electroactive composites were frequently
reported as strategies to achieve multifunctionality. These dress-
ings can respond to stimuli such as pH, temperature, or light, align-
ing with the concept of personalized wound care. For example,
Zhao et al.?* developed an electroactive hydrogel of oxidized so-
dium alginate and carboxymethyl chitosan embedded with AgNPs,
which promoted fibroblast proliferation, angiogenesis, and colla-
gen deposition while exerting anti-inflammatory effects. Wang et
al?” introduced a thermosensitive ALG-EDA/NIPAM-co-HEMIN
formulation with AgNPs that transitioned into a hydrogel at body
temperature, showing strong antibacterial activity against £. coli

Likewise, pH-responsive hydrogels based on carboxyethyl chi-
tosan/oxidized alginate with AgNPs demonstrated effective hemo-
stasis, broad antimicrobial activity, and biocompatibility.®!

The most extensively studied systems (Table 1) were valued for
their tunable rheology, moisture retention, and ability to maintain
a pro-healing environment. Yet, conventional ionically crosslinked
hydrogels often lack stability under physiological conditions.®* Re-
cent modifications, such as incorporating oxidized alginate with
amine-rich polymers (e.g., gelatin, chitosan), have enabled covalent
crosslinking via Schiff bases, improving durability and resistance
to premature degradation.* Electrospun nanofibers, often loaded
with AgNPs and phytochemicals, mimicked extracellular matrix
properties and provided high porosity for drug release. These sys-
tems showed antimicrobial, hemostatic, and regenerative activ-
ity.25:26:39:43,54,67 Comparative studies reported superior healing out-
comes in animal models compared to commercial dressings.®*

Porous sponges combined strong absorptive capacity with
adaptability to irregular wounds.®® Calcium alginate/lysozyme/
AgNP sponges and chitosan/alginate sponges with sericin-AgNPs
and curcumin promoted angiogenesis,>**’ reduced inflammation,
and controlled infections. Films offered wound protection and con-
trolled release of active agents.37-38:45:46,49,54,59.82 Alginate mem-
branes with hyaluronic acid and AgNPs accelerated healing while
preventing biofilm formation.** The only Brazilian study identi-
fied tested sodium alginate films esterified with poly(3-hydroxy-
butyrate) and PEG, loaded with AgNPs, which showed promis-
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Fig. 4. Applications of metallic nanoparticles in the development of alginate-based wound dressings. Graphical representation of the roles of metallic
nanoparticles (e.g., antimicrobial action, antioxidant effect, photothermal activity) and their integration into various wound dressing formats to enhance

therapeutic performance.

ing preclinical results.%® Alginate coatings improved textile-based
dressings. Nonwoven fabrics coated with alginate and AgNPs
(sometimes with essential oils) displayed synergistic antimicrobial
activity and enhanced healing.3-65

Smaller nanoparticles generally exhibit greater antimicrobial
potency but also carry higher cytotoxicity risks.3¢87 AgNPs re-
main the most extensively studied, although cost, long-term safety,
and potential resistance remain concerns.?¥ Green synthesis strate-
gies, often employing plant extracts or microbial systems,*0-#6:5¢
are increasingly favored due to reduced toxicity and environmen-
tal impact,3? though scalability and reproducibility continue to be
challenging. Other oxide metallic nanoparticles, including MgO,
TiO,, VO, FeO, CuO, ZnO, AL O;, GeO, Pd, and Au NPs, have
been explored, but clinical translation is limited by insufficient bi-
osafety data.!®9

Consistently, physicochemical attributes such as size, shape,
and surface chemistry determine biological performance.’’~*3 For
instance, ultra-small AgNPs (<1 nm) demonstrate potent antibacte-
rial activity without detectable cytotoxicity,’® whereas anisotropic
AuNPs show higher cytotoxicity than their spherical counter-
parts.® Despite substantial progress, challenges remain: ionically
crosslinked hydrogels are unstable under physiological conditions,
AgNPs dominate the field despite cost and toxicity concerns, and
alternative metallic nanoparticles require systematic toxicological
evaluation for safe clinical translation.

The next stage of development for alginate—nanoparticle wound
dressings will depend on refining synthesis and functionalization
strategies to meet the complex demands of modern wound care.
Technologies such as 3D printing and stimuli-responsive platforms
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(Fig. 4) hold strong potential for personalized and adaptive thera-
pies, while advances in standardization, regulation, and clinical
validation will be critical to ensure their safe and effective applica-
tion in patients.

Future directions

Despite advances in alginate—metallic nanoparticle dressings, criti-
cal gaps hinder clinical translation. Most studies are limited to in
vitro assays, with few in vivo evaluations and only minimal clini-
cal data. Long-term biocompatibility, degradation kinetics, and
immunological consequences of these composites remain poorly
understood, particularly regarding the fate of metallic degradation
products in chronic wound environments.

Variability in synthesis methods, nanoparticle characterization,
and biological testing complicates reproducibility and data compa-
rability. Establishing standardized fabrication protocols, reporting
guidelines, and performance criteria is essential to ensure reliable
benchmarking and accelerate translation from laboratory research
to clinical application.

Multi-component dressings combining different nanoparticles
or natural bioactives show synergistic antimicrobial and regenera-
tive effects, yet the underlying molecular mechanisms and optimal
formulations remain unclear. Stimuli-responsive dressings offer
innovative functionality, but their stability and predictable per-
formance under dynamic wound conditions have not been fully
demonstrated, highlighting the need for systematic in vivo studies.

Green synthesis approaches are gaining attention due to lower
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toxicity and environmental impact, but scalability and life-cycle
assessments are limited. Addressing these challenges will require
interdisciplinary collaboration, integration of regulatory frame-
works from early development stages, and adoption of advanced
fabrication strategies such as 3D printing to create safe, sustaina-
ble, and clinically effective next-generation wound care platforms.

Conclusions

Alginate-based dressings functionalized with metallic nanoparti-
cles represent a promising advancement in wound management,
combining biocompatibility with enhanced antimicrobial and re-
generative properties. AgNPs remain the most explored due to
their efficacy and commercial availability; however, concerns re-
garding cost, cytotoxicity, resistance, and uncontrolled ion release
necessitate safer, more sustainable approaches. Strategies such as
green synthesis, smart-release systems responsive to pH or tem-
perature, and composite formulations with structural enhancers
show strong potential to address these limitations. The exploration
of alternative nanoparticles (e.g., TiO,, ZnO, Cu, Au) offers new
opportunities but requires rigorous validation to ensure biosafety
and clinical applicability. Future progress will rely on integrating
innovative synthesis, precise dosage control, and advanced fabri-
cation techniques such as 3D printing, alongside robust regulatory
frameworks. These combined efforts can pave the way for next-
generation wound dressings that are effective, safe, and tailored to
patient-specific needs.
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