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Introduction
Nanobiotechnology has revolutionized healthcare by driving sig-
nificant advancements in developing innovative solutions for the 
prevention and treatment of wounds.1 Wounds, particularly chron-
ic and complex ones, remain a global public health challenge, 
causing substantial economic burdens and negative psychosocial 
impacts, including prolonged treatment costs and reduced quality 
of life for affected individuals.2,3 Complex wounds, characterized 

by impaired or delayed healing processes, require a multifaceted 
approach involving tissue debridement, infection control, moisture 
balance, and advanced dressings that create an optimal environ-
ment for tissue regeneration.4

The application of nanotechnology in wound care has emerged 
as a powerful tool for addressing these challenges. Nanomaterials, 
such as metallic nanoparticles (NPs), offer unique physicochemi-
cal properties, including a high surface area-to-volume ratio and 
tunable size, that enable enhanced interactions with biological sys-
tems.5 These properties provide a platform for developing innova-
tive wound care products with superior functionality, such as tar-
geted antimicrobial action, controlled drug release, and enhanced 
wound healing. However, nanotechnology also poses challenges, 
such as potential cytotoxicity, environmental persistence, and the 
need for precise synthesis and characterization methods.6 Despite 
these limitations, the significant potential of nanotechnology in op-
timizing wound treatment drives ongoing research and innovation.

Biopolymers, particularly alginate (ALG), have been exten-
sively explored in this field due to their biocompatibility, biodeg-
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radability, and ability to serve as platforms for bioactive dressing 
development.7 Alginate, a naturally derived hydrophilic polysac-
charide, is especially valued for its gelling capacity and moisture 
retention properties, making it an ideal candidate for wound dress-
ings. Its biodegradable, biocompatible, and bioadhesive character-
istics further enhance its suitability for various forms, including 
hydrogels, microspheres, fibers, sponges, and membranes.8,9 The 
versatility of ALG has enabled the development of numerous com-
mercially available wound care products.

Among these technologies, alginate-based hydrogels have gar-
nered particular attention due to their cost-effectiveness, abun-
dance, and adaptability. They are recognized for meeting the cri-
teria of an ideal wound dressing, such as strong adherence to the 
wound surface, easy removal for cleaning, mechanical and thermal 
protection, moisture regulation, and the ability to deliver bioac-
tive agents.10 However, traditional alginate dressings are limited 
in their antimicrobial efficacy and require functionalization with 
additional agents to address infection risks effectively.

Advances in nanobiotechnology have addressed these limita-
tions by enabling the incorporation of metallic nanoparticles, such 
as silver nanoparticles (AgNPs), into alginate-based dressings. 
AgNPs have long been known for their potent antimicrobial prop-
erties, including antibacterial, antifungal, and antiviral activities, 
which are further enhanced at the nanoscale.11 Additionally, Ag-
NPs offer anti-inflammatory and anticancer properties and have 
applications in biomedical device coatings, diagnostic imaging, 
and targeted drug delivery.12,13 This versatility has led to their in-
clusion in various commercially available wound care products.

The antimicrobial mechanisms of AgNPs involve disrupting 
microbial cell membranes, generating reactive oxygen species, 
and interfering with essential cellular processes, such as protein 
synthesis and DNA replication.14 These properties make them 
effective against sensitive and multidrug-resistant microorgan-
isms, offering a valuable tool for combating antibiotic resistance. 
However, their use is not without challenges. The potential cyto-
toxicity of AgNPs, mediated by mitochondrial respiratory chain 
disruption, reactive oxygen species overproduction, and adenosine 
triphosphate synthesis inhibition, raises concerns about their safety 
in clinical applications.15 Additionally, the environmental accumu-
lation of metallic nanoparticles necessitates the development of 
sustainable synthesis and disposal strategies.

Despite these challenges, integrating alginate with metallic nano-
particles, particularly AgNPs, represents a promising innovation in 
wound care. This combination enhances the antimicrobial properties 
of alginate-based dressings and improves their ability to modulate 
the wound microenvironment and accelerate the healing process. 
The exploration of alternative metallic nanoparticles, such as gold 
(Au), zinc oxide (ZnO), and titanium dioxide (TiO2), offers addi-
tional avenues for addressing the limitations of AgNPs while main-
taining the advantages of nanotechnology in wound treatment.16,17

In this context, this scoping review aims to map and analyze the 
latest technological innovations in wound care involving alginate-
based dressings functionalized with metallic nanoparticles. This 
approach seeks to provide insights into the benefits, limitations, 
and future potential of these advanced materials in addressing the 
complex challenges of wound management.

Methodology

Study design
This scoping review was conducted following the Joanna Briggs 

Institute (JBI) methodological framework,18–21 which provides 
a comprehensive approach to mapping the available evidence. 
The review was reported in accordance with the PRISMA-ScR 
(Preferred Reporting Items for Systematic Reviews and Meta-
Analyses extension for Scoping Reviews) checklist,22,23 and the 
research protocol was registered on the Open Science Framework 
platform.

Research question
The research question was developed using the “Population, Con-
cept, Context” framework recommended by JBI, resulting in the 
following question: What are the technological innovations in 
wound care involving dressings developed with alginate and me-
tallic nanoparticles?

Eligibility criteria
Studies were included if they addressed any stage of the develop-
ment of dressings containing alginate and metallic nanoparticles; 
were available in full in the consulted databases or other sources; 
and were written in English, Portuguese, or Spanish, with no re-
strictions on publication year or methodological approach. Dupli-
cate studies were removed and considered only once.

Search strategy
Descriptors were selected from the Health Sciences Descriptors 
and Medical Subject Headings. The final search expression was: 
(“Metal Nanoparticles” AND alginate) AND (“Wound Healing” 
OR “Wound Infection”).

An initial calibration search was conducted in MEDLINE (via 
PubMed) to assess the sensitivity and specificity of the strategy. 
Once validated, the search was replicated in ScienceDirect, Web of 
Science, Scopus, LILACS, and SciELO. Additional studies were 
identified by screening the reference lists of included articles and 
through gray literature searches in Google Scholar (first 100 re-
sults). The search was completed on June 22, 2024.

Study selection
All retrieved references were imported into the Rayyan reference 
manager, where duplicates were removed. Two independent review-
ers screened titles and abstracts, followed by full-text assessment 
according to the eligibility criteria. Discrepancies were resolved 
through discussion, with a third reviewer acting as arbitrator when 
necessary. The selection process is illustrated in Figure 1.

Data extraction and analysis
Data extraction was performed using a structured instrument de-
veloped by the authors in accordance with JBI guidelines. Extract-
ed data included:
•	 Bibliographic details (author, year, journal, and country of ori-

gin based on the first author’s affiliation);
•	 Methodological approach;
•	 Structural and functional components of the dressings;
•	 Preparation methods, and
•	 Reported therapeutic outcomes.

The data analysis consisted of a qualitative descriptive synthe-
sis. Studies were grouped into thematic categories—geographical 
research distribution, structural composition of dressings, func-
tionalization strategies, fabrication techniques, and therapeutic 
performance. Patterns, technological trends, and knowledge gaps 
were identified through iterative comparison of study characteris-
tics. The synthesis was supported by summary tables, infograph-
ics, and narrative integration of findings.
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Results
A total of 59 scientific articles met the inclusion criteria, cover-
ing studies conducted in Asia (66.1%), Europe (18.6%), Africa 
(10.2%), and the Americas (5.1%) between 2010 and 2024 (Fig. 
2). Asia, particularly China, clearly dominates this field, reflecting 
its national investment in science, technology, and innovation as 
strategic pillars of development. This leadership is supported by 
robust research infrastructure, competitive funding, and interna-
tional collaborations, combined with a growing domestic demand 
for advanced wound care solutions to address chronic wounds, dia-
betic ulcers, and age-related skin injuries. India also emerged as a 
strong contributor, prioritizing the development of cost-effective, 
biocompatible materials through environmentally friendly synthe-
sis routes, often relying on indigenous algal species for alginate 
extraction. These initiatives align with policies aimed at position-
ing India as a hub for scalable biomedical technologies. In Europe, 
Italy and Serbia were notable, the former focusing on reinforcing 
alginate matrices with mechanical and bioactive enhancements, 
and the latter exploring antimicrobial applications of locally syn-
thesized nanoparticles.

In Africa, Egypt adapted nanotechnology to local contexts by 
merging traditional medicinal knowledge with modern fabrication 
strategies. Meanwhile, the Americas produced comparatively few-
er publications, though studies from Brazil and the United States 
offered important insights into antimicrobial alginate formulations 
for resource-limited healthcare environments. Taken together, this 
distribution underscores the emergence of a multipolar and col-
laborative scientific ecosystem in nanomedicine.

Across all studies, sodium alginate was the primary structural 
material, used either alone or in combination with natural or syn-
thetic polymers such as chitosan, carboxymethyl chitosan, car-
boxymethyl cellulose, cellulose nanocrystals, gelatin, polyvinyl 
alcohol, polycaprolactone, or hyaluronic acid (Table 1).24–82 These 
combinations were reported to enhance stability, swelling behav-
ior, tissue adhesion, and biodegradability, properties essential for 
effective wound healing.7–10 Among the functional agents, AgNPs 
were the most prevalent, appearing in more than 80% of the re-
viewed formulations. Their popularity is linked to broad-spectrum 
antimicrobial activity, low cytotoxicity at controlled doses, and 
prevention of biofilm formation.5,6,11 Other nanoparticles included 
ZnO (∼18%), TiO2 (∼8%), FeO (∼6%), CuO (∼6%), PdNPs (∼6%), 

Fig. 1. PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) flow diagram of the study 
selection process. Flowchart illustrating the identification, screening, eligibility assessment, and inclusion of studies in accordance with PRISMA-ScR guide-
lines. The diagram details the number of records retrieved from databases and other sources, duplicates removed, records screened by title/abstract, full-
text articles assessed for eligibility, and final studies included in the review. ALG, alginate; NPs, nanoparticles.
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and Au (∼4%). These alternatives offered additional benefits such 
as antioxidant activity, photothermal responsiveness, and catalytic 
effects.11–13 Beyond metallic agents, natural bioactives like cur-
cumin, tamanu oil, epigallocatechin gallate, honey, and essential 
oils were incorporated to further enhance anti-inflammatory and 
regenerative properties while addressing concerns over antimicro-
bial resistance.

The choice of fabrication method was closely linked to the in-
tended structural and functional outcomes (Fig. 3). Ionic crosslink-
ing with CaCl2, CaCO3, glutaraldehyde or glucono-delta-lactone 
was the most common, producing dressing with tunable stiffness 
and swelling properties. Freeze-drying generated porous sponges 
and scaffolds, with high absorptive capacity, while electrospinning 
produced nanofibers and membranes that mimic the extracellular 
matrix, thereby promoting cell adhesion, proliferation, and oxygen 
diffusion, whereas photocrosslinking stabilized hydrogel networks 
with photosensitive compounds, enabling precise control over 
morphology and mechanics.

The distribution of formulation types revealed a predominance 
of hydrogels, which accounted for more than 50% of the report-

ed systems. Microbeads, fibers, and discs represented over 30%, 
while films and membranes accounted for approximately 20%. 
Coating applications in wound dressings constituted about 10%. 
Regarding biological evaluations, most studies reported in vitro 
antimicrobial activity and included cytotoxicity assays. A smaller 
number involved in vivo animal models, and only a few presented 
preliminary clinical findings.

Nanoparticles were synthesized by chemical, physical, and in-
creasingly by green methods, with synthesis routes strongly in-
fluencing size, morphology, and surface chemistry (Table 2, Fig. 
4).24–82 As summarized in Table 2, AgNPs are typically produced via 
chemical reduction (Sodium borohydride, sodium citrate, trisodium 
citrate dimethyl formamide, carboxymethyl chitosan, ascorbic acid, 
epigallocatechin gallate, sodium alginate, lysozyme, tannic acid, 
sericin protein, LMWG 1,3:2,4-di(4-acylhydrazide)-benzylidene-
sorbitol (DBS-CONHNH2), Tannic acid and Fe complexes (Ta/Fe), 
and d-glucose) yielding spherical, face-centered cubic structure, dot-
ted structures, nanoclusters, and quasi-spherical structures ranging 
from 0,8–403 nm.24–36,38–40,43–55,57,58,60–63,65,66,68,70–72,75,76 AuNPs 
synthesized through sodium citrate reduction exhibit uniform 

Fig. 2. Geographical and chronological distribution of the selected studies. (a) Donut chart illustrating the temporal evolution of research output between 
2010 and 2024, showing a peak in publications from 2022 to 2024. (b) Bar chart comparing the number of publications among the top contributing coun-
tries/regions.
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spherical morphologies (15–25 nm),41,64 whereas CuNPs prepared 
via hydrothermal and one-pot synthesis form spherical or rod-like 
shapes of 50–300 nm.56,77 ZnO nanoparticles produced via sol-gel, 

co-precipitation, or hydrothermal approaches display diverse mor-
phologies, including spheres, rods, hexagons, rectangles, and sheet-
like, within 30–101 nm.37,53,57,67,69,70,74,78,80

Table 1.  Compacted overview of references 24–82, highlighting main categories, methods, and designs of polymer-based biomaterials

Group (Refs.) Structural components 
(alginate association) Functional components Preparation Dressings design

Alginate-based 
(25,29,30,33,42–
44,47,51,54,55,63, 
65–67,72,73,75,77,79, 
80,82)

Alginate NPs, Enzymes, Vitamins, 
Natural and synthetic 
compounds, Antibiot-
ics, Laser irradiation

Water-soluble, Wet-
spinning, Freeze-
drying, Cross-linking, 
Water wash, Air-dried.

Hydrogel, Film, Sponge, Fib-
ers, Beads, Discs, Sprayed 
gel, Scaffolds, Membrane, 
Wound dressing coating

Natural associa-
tions (24,28,31,36–
38,40,41,45,46,48,49, 
56,58,60–62,64,78)

Chitosan, Cellulose, 
Gelatin, Natural gums, 
Hyaluronic Acid, 
Peptides and proteins

NPs, Proteins, Natural com-
pound, Antibiotics, Metal 
organic framework materi-
als, Photothermal treatment

Water-soluble, UV 
irradiation, Freeze-
drying, Cross-linking, 
Water wash, Air-dried.

Hydrogel, Films, Sponge, 
Spheres, Wound 
dressing coating

Synthetic associations  
(26,27,35,39,52,53,5
9,69,70,71,74,76,81)

PCL, NIPAM, PVA, 
PVDF, DBS-CONHNH2, 
PEG, PEGDA, Carbopol

NPs, Growth Factor Plasmid 
DNA, Hemin, Natural and 
synthetic compounds

Water-soluble, UV 
irradiation, Electrospin-
ning, Cross-linking, 
Water wash, Air-dried.

Hydrogel, Films, Fib-
ers, Scaffolds, Mem-
brane, Discs, Beads

Hybrid natural–
synthetic blends 
(32,34,50, 
57,68)

Association of alginate, 
natural and syn-
thetic polymers, and 
a plasticizing agent

NPs, coating agents, 
Antibiotics

Water-soluble, Mag-
netic stirring, Overnight 
soaking, Casting tech-
nique, Cross-linking.

Hydrogel, Films, Mem-
brane, Dissolvable 
wound dressings

DBS-CONHNH2, 1,3:2:4-di(4-acylhydrazide)-benzylidene sorbitol; NIPAM, poly(N-isopropyl acrylamide); NPs, nanoparticles; PCL, polycaprolactone; PEG, polyethylene glycol; PEG-
DA, poly(ethylene glycol) diacrylate; PVA, polyvinyl alcohol; PVDF, polyvinylidene fluoride; UV, ultraviolet.

Fig. 3. Schematic representation of alginate-based dressing preparation incorporating metallic nanoparticles. Illustration of the main processing steps, in-
cluding the selection of structural components (e.g., alginate, biopolymers), addition of functional agents (metallic nanoparticles), and fabrication methods 
(e.g., ionic crosslinking, electrospinning, freeze-drying) to obtain application-specific wound dressings.
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Discussion
Recent advances in biomaterials for wound healing reveal that 
natural polysaccharides, synthetic polymers, and hybrid nanocom-
posites can be strategically combined to achieve multifunctional 
dressings. Alginate-based systems, often blended with chitosan, 
PEG, or protein-based polymers, have been functionalized with 
oxide metallic nanoparticles (AgO, ZnO, TiO2, CuO, FeO) and 
others bioactive compounds to enhance antimicrobial activity, and 
tissue regeneration. Electrospun nanofibers, hydrogels, films, and 
3D scaffolds have demonstrated controlled drug release, extracel-
lular matrix-mimicking structure, and responsiveness to stimuli 
such as pH and temperature, showing superior healing outcomes 
compared to conventional dressings.

In recent years, hybrid and smart systems have expanded the 
potential of alginate-based dressings. Dual-drug nanofibers, pho-
tothermal hydrogels, and electroactive composites were frequently 
reported as strategies to achieve multifunctionality. These dress-
ings can respond to stimuli such as pH, temperature, or light, align-
ing with the concept of personalized wound care. For example, 
Zhao et al.24 developed an electroactive hydrogel of oxidized so-
dium alginate and carboxymethyl chitosan embedded with AgNPs, 
which promoted fibroblast proliferation, angiogenesis, and colla-
gen deposition while exerting anti-inflammatory effects. Wang et 
al.27 introduced a thermosensitive ALG-EDA/NIPAM-co-HEMIN 
formulation with AgNPs that transitioned into a hydrogel at body 
temperature, showing strong antibacterial activity against E. coli 

and S. aureus and stimulating collagen synthesis in diabetic mice. 
Likewise, pH-responsive hydrogels based on carboxyethyl chi-
tosan/oxidized alginate with AgNPs demonstrated effective hemo-
stasis, broad antimicrobial activity, and biocompatibility.61

The most extensively studied systems (Table 1) were valued for 
their tunable rheology, moisture retention, and ability to maintain 
a pro-healing environment. Yet, conventional ionically crosslinked 
hydrogels often lack stability under physiological conditions.83 Re-
cent modifications, such as incorporating oxidized alginate with 
amine-rich polymers (e.g., gelatin, chitosan), have enabled covalent 
crosslinking via Schiff bases, improving durability and resistance 
to premature degradation.4 Electrospun nanofibers, often loaded 
with AgNPs and phytochemicals, mimicked extracellular matrix 
properties and provided high porosity for drug release. These sys-
tems showed antimicrobial, hemostatic, and regenerative activ-
ity.25,26,39,43,54,67 Comparative studies reported superior healing out-
comes in animal models compared to commercial dressings.84

Porous sponges combined strong absorptive capacity with 
adaptability to irregular wounds.85 Calcium alginate/lysozyme/
AgNP sponges and chitosan/alginate sponges with sericin-AgNPs 
and curcumin promoted angiogenesis,33,40 reduced inflammation, 
and controlled infections. Films offered wound protection and con-
trolled release of active agents.37,38,45,46,49,54,59,82 Alginate mem-
branes with hyaluronic acid and AgNPs accelerated healing while 
preventing biofilm formation.34 The only Brazilian study identi-
fied tested sodium alginate films esterified with poly(3-hydroxy-
butyrate) and PEG, loaded with AgNPs, which showed promis-

Table 2.  Summary of precursors, synthesis methods, sizes, and morphologies of nanoparticles reported in the literature

Nanopar-
ticles Precursor Synthesis approach Size range 

(nm) Morphology Refs

Ag AgNO3, Ag2SO4 Photoreduction (ultraviolet light 365 nm), 
Chemical reduction (sodium borohydride, 
sodium citrate, trisodium citrate dimethyl 
formamide, carboxymethyl chitosan, ascorbic 
acid, epigallocatechin gallate, sodium algi-
nate, lysozyme, tannic acid, sericin protein, 
LMWG 1,3:2,4-di(4-acylhydrazide)-ben-
zylidenesorbitol (DBS-CONHNH2), Tannic acid 
and Fe complexes (Ta/Fe), and d-glucose), 
Electrochemical synthesis, Green synthesis

0.8 – 403 Spherical, face-
centered cubic 
structure, dot-
ted structures, 
nanoclusters, 
quasi-spherical

24–36,38–40, 
43–55,57–58, 
60–63,65,66,68, 
70–72,75,76

Au HAuCl4 Chemical reduction (sodium citrate) 15 – 25 Spherical 41,64

Cu Cu(NO3)2·xH2O Hydrothermal, one-pot synthesis 50 – 300 Spherical, 
rod-shaped

56,74,77

ZnO ZnCl2, Zn(OAc)2, 
Zn(CH3COO)2·xH2O

Sol-gel, hydrothermal meth-
od, Co-precipitation

30 – 101 Spherical, rod-
shaped, hexagonal 
and rectangular-
shaped, sheet-like

37,53,57,67,69, 
70,74,78,80

FexOx FeSO4·7H2O, 
Fe(acac)3

Solvathermal synthesis, sol-gel approach, 
chemical reduction (ethylene glycol)

5 - 64 Spherical, 
cubic shapes

70,80,81

TiO2 TiCl4, Ti (Com-
mercially plates), 
Ti(acac)2OiPr2, 
Ti(O-i-Pr)4

Green synthesis, Hydrothermal method 5 - 100 Nanoneedles 59,73,80,82

Pd PdCl2 Green synthesis ∼7 – 45 Spherical 42,55,79

Other (VOx, 
MgO, GeO2, 
Al2O3)

VO2, MgCl2, 
Ge(OEt)4, 
Al(O-i-Pr)3

Solvothermal method, chemical pre-
cipitation, sol-gel approach

10 – 200 Nanowires, rec-
tangular and rod-
shaped, spherical

43,70,80
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ing preclinical results.68 Alginate coatings improved textile-based 
dressings. Nonwoven fabrics coated with alginate and AgNPs 
(sometimes with essential oils) displayed synergistic antimicrobial 
activity and enhanced healing.63,65

Smaller nanoparticles generally exhibit greater antimicrobial 
potency but also carry higher cytotoxicity risks.86,87 AgNPs re-
main the most extensively studied, although cost, long-term safety, 
and potential resistance remain concerns.88 Green synthesis strate-
gies, often employing plant extracts or microbial systems,40,46,54 
are increasingly favored due to reduced toxicity and environmen-
tal impact,89 though scalability and reproducibility continue to be 
challenging. Other oxide metallic nanoparticles, including MgO, 
TiO2, VO, FeO, CuO, ZnO, Al2O3, GeO, Pd, and Au NPs, have 
been explored, but clinical translation is limited by insufficient bi-
osafety data.16,90

Consistently, physicochemical attributes such as size, shape, 
and surface chemistry determine biological performance.91–93 For 
instance, ultra-small AgNPs (<1 nm) demonstrate potent antibacte-
rial activity without detectable cytotoxicity,58 whereas anisotropic 
AuNPs show higher cytotoxicity than their spherical counter-
parts.93 Despite substantial progress, challenges remain: ionically 
crosslinked hydrogels are unstable under physiological conditions, 
AgNPs dominate the field despite cost and toxicity concerns, and 
alternative metallic nanoparticles require systematic toxicological 
evaluation for safe clinical translation.

The next stage of development for alginate–nanoparticle wound 
dressings will depend on refining synthesis and functionalization 
strategies to meet the complex demands of modern wound care. 
Technologies such as 3D printing and stimuli-responsive platforms 

(Fig. 4) hold strong potential for personalized and adaptive thera-
pies, while advances in standardization, regulation, and clinical 
validation will be critical to ensure their safe and effective applica-
tion in patients.

Future directions
Despite advances in alginate–metallic nanoparticle dressings, criti-
cal gaps hinder clinical translation. Most studies are limited to in 
vitro assays, with few in vivo evaluations and only minimal clini-
cal data. Long-term biocompatibility, degradation kinetics, and 
immunological consequences of these composites remain poorly 
understood, particularly regarding the fate of metallic degradation 
products in chronic wound environments.

Variability in synthesis methods, nanoparticle characterization, 
and biological testing complicates reproducibility and data compa-
rability. Establishing standardized fabrication protocols, reporting 
guidelines, and performance criteria is essential to ensure reliable 
benchmarking and accelerate translation from laboratory research 
to clinical application.

Multi-component dressings combining different nanoparticles 
or natural bioactives show synergistic antimicrobial and regenera-
tive effects, yet the underlying molecular mechanisms and optimal 
formulations remain unclear. Stimuli-responsive dressings offer 
innovative functionality, but their stability and predictable per-
formance under dynamic wound conditions have not been fully 
demonstrated, highlighting the need for systematic in vivo studies.

Green synthesis approaches are gaining attention due to lower 

Fig. 4. Applications of metallic nanoparticles in the development of alginate-based wound dressings. Graphical representation of the roles of metallic 
nanoparticles (e.g., antimicrobial action, antioxidant effect, photothermal activity) and their integration into various wound dressing formats to enhance 
therapeutic performance. 
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toxicity and environmental impact, but scalability and life-cycle 
assessments are limited. Addressing these challenges will require 
interdisciplinary collaboration, integration of regulatory frame-
works from early development stages, and adoption of advanced 
fabrication strategies such as 3D printing to create safe, sustaina-
ble, and clinically effective next-generation wound care platforms.

Conclusions
Alginate-based dressings functionalized with metallic nanoparti-
cles represent a promising advancement in wound management, 
combining biocompatibility with enhanced antimicrobial and re-
generative properties. AgNPs remain the most explored due to 
their efficacy and commercial availability; however, concerns re-
garding cost, cytotoxicity, resistance, and uncontrolled ion release 
necessitate safer, more sustainable approaches. Strategies such as 
green synthesis, smart-release systems responsive to pH or tem-
perature, and composite formulations with structural enhancers 
show strong potential to address these limitations. The exploration 
of alternative nanoparticles (e.g., TiO2, ZnO, Cu, Au) offers new 
opportunities but requires rigorous validation to ensure biosafety 
and clinical applicability. Future progress will rely on integrating 
innovative synthesis, precise dosage control, and advanced fabri-
cation techniques such as 3D printing, alongside robust regulatory 
frameworks. These combined efforts can pave the way for next-
generation wound dressings that are effective, safe, and tailored to 
patient-specific needs.
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